7. ์•Œ๊ณ ๋ฆฌ์ฆ˜

์‹œ๊ฐ„, ๊ณต๊ฐ„ ๋ณต์žก๋„


Sort Algorithm

Bubble Sort

Selection Sort

def selectionSort(alist):
    for fillslot in range(len(alist)-1, 0, -1):
        positionOfMax = 0
        for location in range(1, fillslot+1):
            if alist[location] > alist[positionOfMax]:
                positionOfMax = location
        alist[fillslot], alist[positionOfMax] = alist[positionOfMax], alist[fillslot]

Pasted image 20250308194637.png

Insertion Sort

def insertion_sort(collection):
    for index in range(1, len(collection)):
        while index > 0 and collection[index] < collection[index - 1]:
            collection[index], collection[index - 1] = collection[index - 1], collection[index]
            index -= 1
    return collection

Pasted image 20250308194653.png

Merge Sort

def merge_sort(lst):
    if len(lst) <= 1:
        return lst
    mid = len(lst) // 2
    left = merge_sort(lst[:mid])
    right = merge_sort(lst[mid:])
    return merge(left, right)

Pasted image 20250308194720.png

Heap Sort

def heapify(arr, index, heap_size):
    largest = index
    left = 2 * index + 1
    right = 2 * index + 2
    if left < heap_size and arr[left] > arr[largest]:
        largest = left
    if right < heap_size and arr[right] > arr[largest]:
        largest = right
    if largest != index:
        arr[index], arr[largest] = arr[largest], arr[index]
        heapify(arr, largest, heap_size)

def heap_sort(arr):
    n = len(arr)
    for i in range(n//2 - 1, -1, -1):
        heapify(arr, i, n)
    for i in range(n-1, 0, -1):
        arr[0], arr[i] = arr[i], arr[0]
        heapify(arr, 0, i)
    return arr

Pasted image 20250308194728.png

Quick Sort

def quickSort(alist):
    quickSortHelper(alist, 0, len(alist)-1)

def quickSortHelper(alist, first, last):
    if first < last:
        splitpoint = partition(alist, first, last)
        quickSortHelper(alist, first, splitpoint-1)
        quickSortHelper(alist, splitpoint+1, last)

def partition(alist, first, last):
    pivotvalue = alist[first]
    leftmark = first + 1
    rightmark = last
    done = False
    while not done:
        while leftmark <= rightmark and alist[leftmark] <= pivotvalue:
            leftmark += 1
        while rightmark >= leftmark and alist[rightmark] >= pivotvalue:
            rightmark -= 1
        if rightmark < leftmark:
            done = True
        else:
            alist[leftmark], alist[rightmark] = alist[rightmark], alist[leftmark]
    alist[first], alist[rightmark] = alist[rightmark], alist[first]
    return rightmark

Pasted image 20250313174151.png


Divide and Conquer

def fibb(n):
    if n <= 1:
        return 1
    return fibb(n-1) + fibb(n-2)

Dynamic Programming

table = [None] * (n+1)
def fibb(n):
    if n <= 1:
        return 1
    if table[n] is not None:
        return table[n]
    table[n] = fibb(n-1) + fibb(n-2)
    return table[n]
def fibb(n):
    table = [1] * (n+1)
    for i in range(2, n+1):
        table[i] = table[i-1] + table[i-2]
    return table[n]

Greedy Algorithm


Graph

Graph Traversal: BFS, DFS

Shortest Path

Dijkstra

Pasted image 20250313174320.png

import heapq
INF = int(1e9)

def dijkstra(start, graph, distance):
    q = []
    heapq.heappush(q, (0, start))
    distance[start] = 0
    while q:
        dist, now = heapq.heappop(q)
        if distance[now] < dist:
            continue
        for next_node, cost in graph[now]:
            new_cost = dist + cost
            if distance[next_node] > new_cost:
                distance[next_node] = new_cost
                heapq.heappush(q, (new_cost, next_node))

Floyd-Warshall

for k in range(1, n+1):
    for i in range(1, n+1):
        for j in range(1, n+1):
            graph[i][j] = min(graph[i][j], graph[i][k] + graph[k][j])

Bellman-Ford

Pasted image 20250313174347.png

def bellman_ford(start, edges, dist, n):
    dist[start] = 0
    for i in range(n):
        for u, v, cost in edges:
            if dist[u] != INF and dist[v] > dist[u] + cost:
                dist[v] = dist[u] + cost
                if i == n - 1:
                    return True  # ์Œ์ˆ˜ ์‚ฌ์ดํด ์กด์žฌ
    return False

Minimum Spanning Tree

Prim

Kruskal