Week 8, 9 ํ•™์Šต ์ •๋ฆฌ

Week 11 ํ•™์Šต ์ •๋ฆฌ

Note

**1. OD Oveview
2 Stage Detectors
3. OD Library
4. Neck
5. 1 Stage Detectors
6. EfficientDet
7. Advanced OD1
8. Advanced OD2
9. Ready for Competition
10. OD in Kaggle

1. OD Oveview

Evaluation

Library

ETC

2. 2 Stage Detectors

โ‡’ 1๋‹จ๊ณ„: ์œ„์น˜ ํŒŒ์•…(localization), 2๋‹จ๊ณ„: ํ•ด๋‹น ์œ„์น˜์— ์žˆ๋Š” ๊ฐ์ฒด๊ฐ€ ๋ฌด์—‡์ธ์ง€ ํŒŒ์•…(classification)

R-CNN

image.png

๋‹จ์ 

  1. 2000๊ฐœ์˜ ROI๊ฐ€ ๊ฐ๊ฐ CNN์„ ํ†ต๊ณผ
  2. ๊ฐ•์ œ Wrap์€ ์„ฑ๋Šฅ ํ•˜๋ฝ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ€์ง
  3. CNN, SVM, Bbox regressr ๋ชจ๋‘ ๋”ฐ๋กœ ํ•™์Šต
  4. End-to-End X

SPPNet

โ‡’ R-CNN์˜ ๋‹จ์ ์ธ Wrap๊ณผ์ •๊ณผ, 2000๊ฐœ์˜ ROI๊ฐ€ CNN์„ ํ†ต๊ณผํ•œ๋‹ค๋Š” ๋‹จ์ ์„ Spatial pyramid pooling์„ ํ†ตํ•ด ๋ณด์™„

image.png

image.png

Fast R-CNN

โ‡’ CNN, SVM, Bbox regressr ๋ชจ๋‘ ๋”ฐ๋กœ ํ•™์Šตํ•œ๋‹ค๋Š” ๋‹จ์ ์„ ํ•ด๊ฒฐ

image.png

Faster R-CNN

โ‡’ Fast R-CNN + RPN (Region Proposal Network), End-to-End ํ˜•ํƒœ๋กœ ๋งŒ๋“ค์–ด์ง

image.png

image.png

3. OD Library

image.png

MMDetection

image.png

Detectron2

image.png

image.png

image.png

4. Neck

โ‡’ Backbone์˜ ๋งˆ์ง€๋ง‰ feature map๋งŒ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ์ค‘๊ฐ„์˜ feature map์— ๋Œ€ํ•ด์„œ๋„ RoI๋ฅผ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•

image.png

Feature Pyramid Network (FPN)

image.png

Path Aggregation Network (PANet)

โ‡’ FPN์˜ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Bottom Up way๋ฅผ ํ•˜๋‚˜ ๋” ์ถ”๊ฐ€, ์ดํ›„ Adaptive Feature Pooling์„ ํ†ตํ•ด ๊ฐ๊ฐ์˜ feature map์— RPN์ด ์ ์šฉ๋˜์—ฌ RoI๋ฅผ ์ƒ์„ฑํ•ด์„œ ๋งˆ์ง€๋ง‰์œผ๋กœ ํ•˜๋‚˜์˜ Vector๋กœ ๋งŒ๋“ฆ

image.png

image.png

DetectoRS

image.png

โ‡’ Neck์„ ์ด์šฉํ•ด์„œ ๋‹ค์‹œ Backbone์„ ํ•™์Šตํ•˜๋Š” ๋ฐฉ์‹ โ‡’ FLOPs ๊ฐ€ ๋งŽ์ด ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋จ

image.png

5. 1 Stage Detectors

โ‡’ 2 Stage Detectors๋Š” ์‹œ๊ฐ„์ด ๋„ˆ๋ฌด ์˜ค๋ž˜ ๊ฑธ๋ ค Real world์—์„œ ์‚ฌ์šฉํ•˜๊ธฐ ์–ด๋ ค์› ๋‹ค. ์ด์— ๋”ฐ๋ผ Localization๊ณผ classification์„ ๋™์‹œ์— ์ง„ํ–‰ํ•˜๋Š” 1 Staget Detectors๊ฐ€ ๋“ฑ์žฅํ•˜๊ฒŒ ๋œ๋‹ค.

image.png

Yolo

SSD

โ‡’ Yolo์˜ ๋‹จ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‚˜์˜จ ๋ชจ๋ธ

Yolo v2

RetinaNet

โ‡’ ๊ฐ์ฒด๊ฐ€ ์žˆ๋Š” ๋ถ€๋ถ„(positive sample) ๋ณด๋‹ค ๋ฐฐ๊ฒฝ ๋ถ€๋ถ„(negative sample)์ด ๋” ๋งŽ์€ class embalance๋ฌธ์ œ๋ฅผ ๊ฐ€์ง„๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์—ฐ๊ตฌํ•œ ๋ชจ๋ธ

6. EfficientDet

โ‡’ OD์—์„œ ์†๋„๊ฐ€ ์ค‘์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ Efficiency๊ฐ€ ์ค‘์š”ํ•˜๊ฒŒ ๋จ

โ‡’ Backbone, FPN, and box/class prediction networks์„ ๋™์‹œ์— Scale Upํ•˜์—ฌ ์ ์ ˆํ•œ ๊ตฌ์กฐ๋ฅผ ์ฐพ๋Š”๋‹ค. (EfficientNet๊ณผ ๋น„์Šทํ•˜๊ฒŒ)

7. Advanced OD1

Cascade RCNN

โ‡’ high quality detection์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด์„  IoU threshold๋ฅผ ๋†’์—ฌ ํ•™์Šตํ•  ํ•„์š”๊ฐ€ ์žˆ์Œ โ†’ ์„ฑ๋Šฅ ํ•˜๋ฝ์˜ ๋ฌธ์ œ ์กด์žฌ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ๋œ ๋ชจ๋ธ

image.png

Deformable Convolutional Networks (DCN)

โ‡’ CNN์˜ ๋ฌธ์ œ์ ์ธ ์ผ์ •ํ•œ ํŒจํ„ด์„ ์ง€๋‹Œ convolution neural networks๋Š” geometric transformations์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ํ•ด๊ฒฐ

Transformer (DETR)

๊ธฐ์กด์˜ Object Detection์˜ hand-crafted post process ๋‹จ๊ณ„๋ฅผ transformer๋ฅผ ์ด์šฉํ•ด ์—†์•ฐ

8. Advanced OD2

Yolo v4

image.png

image.png

image.png

image.png

M2Det

โ‡’ Multi-level, multi-scale feature pyramid ์ œ์•ˆ, SSD์— ํ•ฉ์ณ์„œ M2Det๋ผ๋Š” one stage detector ์ œ์•ˆ

CornerNet

โ‡’ Anchor Box๊ฐ€ ์—†๋Š” 1 stage detector, ์ขŒ์ƒ๋‹จ ์šฐํ•˜๋‹จ ์ ์„ ์ฐพ์•„ ๊ฐ์ฒด๋ฅผ ๊ฒ€์ถœ

image.png

9. Ready for Competition

image.png

image.png

image.png

image.png

image.png

Validation set ์ฐพ๊ธฐ

  1. Random split: ์ „์ฒด ๋ฐ์ดํ„ฐ๋ฅผ ๋žœ๋คํ•˜๊ฒŒ Train / Valid ๋กœ ๋ถ„๋ฆฌ
  2. K Fold validation: ์ „์ฒด ๋ฐ์ดํ„ฐ๋ฅผ ์ผ์ • ๋น„์œจ๋กœ Train / Valid๋กœ ๋ถ„๋ฆฌ โ‡’ Split ์ˆ˜๋งŒํผ์˜ ๋…๋ฆฝ์ ์ธ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ณ  ๊ฒ€์ฆ
  3. Stratified K fold: ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š๋Š” K fold ๋ฐฉ์‹๊ณผ ๋‹ฌ๋ฆฌ, fold ๋งˆ๋‹ค ์œ ์‚ฌํ•œ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋ฅผ ๊ฐ–๋„๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•, ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๊ฐ€ imbalanceํ•œ ์ƒํ™ฉ์—์„œ ์ข‹์Œ
  4. Group K fold

Data Augmentation

Ensemble & TTA

10. OD in Kaggle